Atomic layer deposition of GaN at low temperatures

Cagla Ozgit, Inci Donmez, Mustafa Alevli, and Necmi Biyikli^{a)} UNAM – Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara Turkey

(Received 15 August 2011; accepted 31 October 2011; published 1 December 2011)

The authors report on the self-limiting growth of GaN thin films at low temperatures. Films were deposited on Si substrates by plasma-enhanced atomic layer deposition using trimethylgallium (TMG) and ammonia (NH₃) as the group-III and -V precursors, respectively. GaN deposition rate saturated at 185 °C for NH₃ doses starting from 90 s. Atomic layer deposition temperature window was observed from 185 to ~385 °C. Deposition rate, which is constant at ~0.51 Å/cycle within the temperature range of 250 – 350 °C, increased slightly as the temperature decreased to 185 °C. In the bulk film, concentrations of Ga, N, and O were constant at ~36.6, ~43.9, and ~19.5 at. %, respectively. C was detected only at the surface and no C impurities were found in the bulk film. High oxygen concentration in films was attributed to the oxygen impurities present in group-V precursor. High-resolution transmission electron microscopy studies revealed a microstructure consisting of small crystallites dispersed in an amorphous matrix. © 2012 American Vacuum Society. [DOI: 10.1116/1.3664102]

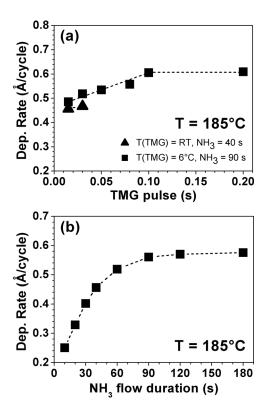
I. INTRODUCTION

III-nitride compound semiconductors (AlN, GaN, and InN) and their alloys are promising materials for a wide range of electronic and optoelectronic device applications.¹ Although high quality epitaxial films of these nitrides can be grown by metal-organic chemical vapor deposition (MOCVD), temperature-sensitive device layers and substrates used in novel devices necessitate the adaptation of low-temperature growth methods. Atomic layer deposition (ALD) is a low-temperature chemical vapor deposition method, which offers unique advantages such as high uniformity, conformality, and sub-nanometer thickness control due to its self-limiting growth mechanism.²

Growth of GaN thin films by atomic layer epitaxy (ALE) using triethylgallium (Ga(C₂H₅)₃),³ trimethylgallium (Ga(CH₃)₃),⁴ and gallium trichloride (GaCl₃),⁵ has been reported for temperatures above 450 °C. Lower growth temperatures (350 - 400 °C) were achieved when GaCl was used as the gallium precursor.⁶ Sumakeris *et al.*⁷ reported growth of GaN films within the temperature range of 150 – 650 °C by using a novel reactor design that employs hot filaments to decompose the ammonia. Recently, Kim *et al.*⁸ deposited GaN thin films by thermal ALD using GaCl₃ and NH₃ precursors. In their study, growth rate saturated at ~2.0 Å/cycle within the temperature range of 500 - 750 °C for GaCl₃ and NH₃ doses of (7 s, 50 sccm) and (10 s, 500 sccm), respectively.

In this work, we demonstrate the self-limiting growth of GaN thin films via plasma-enhanced ALD (PEALD) within the temperature range of 185 - 385 °C, using TMG and NH₃ as the group-III and -V precursors, respectively.

II. EXPERIMENT


GaN thin films were deposited on precleaned Si substrates at temperatures ranging from 100 to 500 °C. Depositions were carried out in a load-locked Fiji F200 ALD reactor (Cambridge Nanotech) with a base pressure of 0.25 torr, using Ar as the carrier gas. Trimethylgallium was kept at room temperature. NH₃ plasma flow rate and power were 50 sccm and 300 W, respectively. System was purged for ten seconds after each precursor exposure. Prior to depositions, solvent-cleaned substrates were dipped into dilute HF solution for \sim 1 min, then rinsed with DI-water and dried with N₂.

Film thicknesses were measured by using variable angle spectroscopic ellipsometry (VASE, J.A. Woollam). Ellipsometric spectra of the samples were recorded ex situ at three angles of incidence $(65^\circ, 70^\circ, 75^\circ)$ in the wavelength range of 400 - 1200 nm. Optical constants of a ~ 17 nm thick GaN thin film deposited at 250 °C was modeled by the Cauchy dispersion function, and used for the estimation of PEALDgrown film thicknesses. Thermo Scientific K-Alpha spectrometer with a monochromatized Al Ka x-ray source was used for the x-ray photoelectron spectroscopy (XPS) studies. Grazing-incidence x-ray diffraction (GIXRD) measurements were performed in a PANanalytical X'Pert PRO MRD diffractometer using Cu Ka radiation. FEI Tecnai G2 F30 transmission electron microscope (TEM) was used for the imaging of samples prepared by FEI Nova 600i Nanolab focused ion beam (FIB) system. Surface morphology was investigated by using atomic force microscopy (AFM) (Asylum Research, MFP-3D).

III. RESULTS AND DISCUSSION

Effect of TMG dose on the deposition rate was investigated at 185 °C with a constant NH₃ flow duration of 40 s [Fig. 1(a)]. Trimethylgallium doses of 0.015 and 0.03 s resulted with the same deposition rate, i.e., 0.46 Å/cycle; indicating that 0.015 s is high enough for saturative surface reactions to take place. Figure 1(b) shows GaN deposition rate as a function of NH₃ flow duration. Trimethylgallium dose and NH₃ flow rate were constant at 0.015 s and 50 sccm, respectively. Deposition rate increased with NH₃ flow

^{a)}Author to whom correspondence should be addressed; electronic mail: biyikli@unam.bilkent.edu.tr

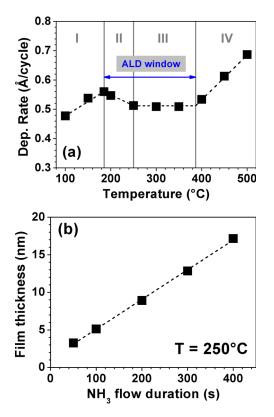


Fig. 1. (a) Trimethylgallium saturation curves at 185 °C for different TMG temperatures. NH₃ flow rate was constant at 50 sccm. (b) NH₃ saturation curve at 185 °C. Trimethylgallium dose was constant at 0.015 s.

duration until 90 s and reached saturation at ~ 0.56 Å/cycle. By using the saturation value of NH₃ exposure step (50 sccm, 90 s), saturation behavior of TMG was restudied. Since TMG has a very high vapor pressure at room temperature, precursor was cooled down to 6°C and stabilized at this temperature prior to depositions. The results are given in Fig. 1(a). Deposition rate increased with TMG dose within the range of 0.015 - 0.1 s. For 0.1 s and higher TMG doses, saturation was observed at ~ 0.61 A/cycle. In order to determine the temperature range at which the deposition rate is constant (i.e., the ALD window), 100 cycles with 0.015 s TMG and 90 s NH₃ plasma were deposited at different temperatures. Deposition rate versus temperature graph consisted of four distinct regions [Fig. 2(a)]. Deposition rate was constant at ~ 0.51 Å/cycle in region III (250 – 350 °C), implying that the growth of GaN at these temperatures is self-limiting. For temperatures in the range of 185 - 250 °C (region II), deposition rate increased with decreasing temperature. Deposition rate was ~ 0.56 Å/cycle at 185 °C. In order to investigate the effect of purging duration at this temperature, an experiment has been carried out by doubling the purge time. Deposition rate obtained by using 20 s purge time was same as that obtained by using 10 s. Although deposition rate has an obvious temperature dependency in region II, both TMG and NH₃ precursors showed saturation behaviors at 185 °C. Since growth was proven to be selflimiting at 185°C, region II has been also included to the ALD window. Region I (100 – $185 \degree$ C) corresponds to the activation energy limited zone, where deposition rate

Fig. 2. (Color online) (a) Deposition rates of GaN thin films at different temperatures. (Trimethylgallium was at room temperature.) (b) Film thickness vs number of deposition cycles.

decreases at low temperatures due to the decrease in thermal energy. For \sim 385 °C and higher temperatures (region IV) growth rate increased with temperature, which is probably due to the decomposition of TMG. Depending on these observations, upper and lower limits of the ALD window, in which surface reactions take place in a self-limiting fashion, were estimated as \sim 385 °C and 185, respectively. Film thickness versus number of deposition cycles at 250 °C is given in Fig. 2(b). Film thickness increases linearly with the number of cycles, confirming that the deposition rate is constant at this temperature due to the self-limiting nature of the ALD process.

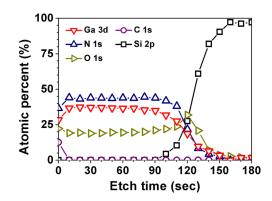


Fig. 3. (Color online) XPS depth profile of ${\sim}17$ nm thick GaN thin film deposited at 250 $^{\circ}\text{C}.$

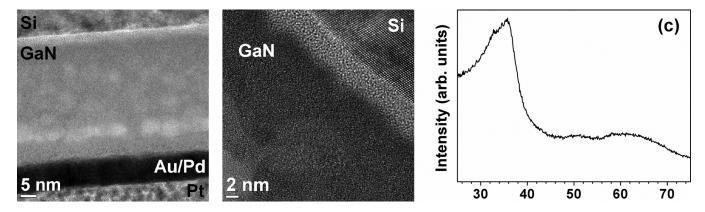


Fig. 4. (a), (b) Cross-sectional HR-TEM images of \sim 41 nm thick GaN thin film deposited at 185 °C on Si (111) substrate. (b) GIXRD pattern of \sim 17 nm thick GaN thin film deposited at 250 °C on Si (100) substrate.

Compositional characterization of ~17 nm thick GaN film was carried out by using XPS. Survey scan detected peaks of gallium, nitrogen, oxygen, and carbon. Figure 3 represents the compositional depth profile of the film deposited at 250 °C. In the bulk film (etch time = 60 s), concentrations of Ga, N, and O were 36.6, 43.9, and 19.5 at. %, respectively. Compositional characterization of ~ 41 nm thick film deposited at 185 °C revealed similar results, where concentrations of Ga, N, and O in the bulk film were determined as \sim 31.3, \sim 46.9, and \sim 21.8 at. %, respectively. As the deposition temperature decreased from 250 to 185 °C, oxygen content in the film increased from ~ 19.5 to ~ 21.8 at. %. This behavior is similar to that seen in the case of deposition rate, and may explain the higher deposition rates observed in region II [Fig. 2(a)]. For both of these films, carbon was detected only at the surfaces and no C impurities were found in the bulk films, indicating that the methyl groups (CH₃) were completely removed from TMG molecules by the use of NH₃ plasma. Constant oxygen concentrations throughout the film thicknesses reveal that the oxidation occurs during film deposition. In order to determine the source of oxygen present in the films, trimethylaluminum (TMA) precursor (carried by Ar) was pulsed into the reactor for 500 times at 250 °C. There was 10 s purging time between the pulses. If there were any unwanted oxygen contents in the reactor or in the Ar gas, then Al₂O₃ would be expected to grow. However, no film growth was observed. A similar experiment was carried out at 185 °C using the TMG precursor. Trimethylgallium (carried by Ar) was pulsed into the reactor for 300 times. The reactor was purged for 10 s after each pulse. Again, no film growth was observed. These results indicate that the source of oxygen is neither a leak in the reactor nor the Ar gas. The most probable source of high oxygen levels is the O-containing impurities in ammonia (NH_3) gas. This argument strengthens by the fact that there are no filters/gas purifiers attached to this line.

High-resolution TEM (HR-TEM) images of \sim 41 nm thick GaN thin film deposited at 185 °C are given in Figs. 4(a) and 4(b). Film thickness was measured as 40.8 nm from Fig. 4(a), which is in good agreement with the results obtained by spectroscopic ellipsometry. Film was found to be composed of small crystallites dispersed in an amorphous

matrix [Fig. 4(b)]. A similar microstructure was also observed for the ~ 17 nm thick GaN thin film deposited at 250 °C (not shown here). GIXRD pattern of this sample [Fig. 4(c)] indicates an amorphous structure, with some implications of long-range order corresponding to the small crystallites that exist in the amorphous Ga-O-N matrix.

Surface morphology of the film was studied by AFM. Root-mean-square roughness (rms) of the ~ 17 nm thick film deposited at 250 °C was measured as ~ 0.58 nm from a 1 μ m $\times 1 \mu$ m scan area.

IV. SUMMARY AND CONCLUSIONS

GaN thin films were deposited via PEALD at temperatures ranging from 100 - 500 °C. Atomic layer deposition temperature window was observed from 185 to ~385 °C. Deposition rate, which is constant at ~ 0.51 A/cycle within the temperature range of 250 – 350 °C, increased slightly as the temperature decreased to 185 °C. Although deposition rate has an obvious temperature dependency within the range of 185 – 250 °C, growth was proven to be self-limiting at these temperatures. Film thickness versus number of cycles plot exhibited a linear behavior (i.e., constant deposition rate) at 250 °C. Concentrations of Ga and N were constant at ~ 36.6 and ~ 43.9 at. % through the film thickness. \sim 19.5 at. % O present in the bulk film was attributed to the oxygen impurities in group-V precursor. High-resolution TEM images of GaN thin film deposited at 185 °C showed small crystallites dispersed in an amorphous matrix.

ACKNOWLEDGMENTS

This work was performed at UNAM supported by the State Planning Organization (DPT) of Turkey through the National Nanotechnology Research Center Project. N.B. acknowledges support from Marie Curie International Re-integration Grant (Grant No. PIRG05-GA-2009-249196). M.A. acknowledges the financial support from TUBITAK (Grant No. 232.01-660/4835).

¹S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. **87**, 965 (2000).

²M. Leskela and M. Ritala, Thin Solid Films 409, 138 (2002).

³M. A. Khan, R. A. Skogman, J. M. Van Hove, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. 60, 1366 (1992).

- ⁴N. H. Karam, T. Parodos, P. Colter, D. McNulty, W. Rowland, J. Schetzina,
- N. El-Masry, and S. M. Bedair, Appl. Phys. Lett. 67, 94 (1995).
- ⁵H. Tsuchiya, M. Akamatsu, M. Ishida, and F. Hasegawa, Jpn. J. Appl. Phys. 35, L748 (1996).
- ⁶A. Koukitu, Y. Kumagai, T. Taki, and H. Seki, Jpn. J. Appl. Phys. 38, 4980
- (1999). ⁷J. Sumakeris, Z. Sitar, K. S. Ailey-Trent, K. L. More, and R. F. Davis, Thin Solid Films 225, 244 (1993)
- ⁸O. H. Kim, D. Kim, and T. Anderson, J. Vac. Sci. Technol. A 27, 923 (2009).